Equation f(p(x)) = q(f(x)) for given real functions p, q

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

(P, Q)-Special Functions

It is suggested that the (p, q)-hypergeometric series studied by Burban and Klimyk (in Integral Transforms and Special Functions 2 (1994) 15-36) can be considered as a special case of a more general (P, Q)-hypergeometric series. 1. Introduction I propose a general (P, Q)-hypergeometric series. In this, I am inspired mainly by the paper of Burban and Klimyk [1] titled " P, Q-differentiation, P, ...

متن کامل

HARDY–HILBERT’S TYPE INEQUALITIES FOR (p, q)-Hö(0,∞) FUNCTIONS

New inequalities concerning functions of the form f (xy) similar to Hardy-Hilbert’s integral inequality are presented. A new class of functions denoted by (p, q)−-Hö(I) is defined. Many other new inequalities are also given.

متن کامل

ON CONVEX OPERATOR FOR (p, q)-ANALYTIC FUNCTIONS

We recall here some of the definitions given in [7]. Definition 1. The ’discrete plane’ Q′ with respect to some fixed point z′ = (x′, y′) in the first quadrant, is defined by the set of lattice points, Q′ = {(pmx′, qny′) : m,n ∈ Z the set of integers}. Definition 2. Two lattice points zi, zi+1 ∈ Q′ are said to be ’adjacent’ if zi+1 is one of (pxi, yi), (p−1xi, yi), (xi, qyi) or (xi, q−1yi). Def...

متن کامل

Tokuyama's Identity for Factorial Schur $P$ and $Q$ Functions

A recent paper of Bump, McNamara and Nakasuji introduced a factorial version of Tokuyama’s identity, expressing the partition function of six vertex model as the product of a t-deformed Vandermonde and a Schur function. Here we provide an extension of their result by exploiting the language of primed shifted tableaux, with its proof based on the use of non-intersecting lattice paths.

متن کامل

The Horn Recursion for Schur P - and Q - Functions : Extended

A consequence of work of Klyachko and of Knutson-Tao is the Horn recursion to determine when a Littlewood-Richardson coefficient is non-zero. Briefly, a LittlewoodRichardson coefficient is non-zero if and only if it satisfies a collection of Horn inequalities which are indexed by smaller non-zero Littlewood-Richardson coefficients. There are similar Littlewood-Richardson numbers for Schur P and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Czechoslovak Mathematical Journal

سال: 2012

ISSN: 0011-4642,1572-9141

DOI: 10.1007/s10587-012-0061-2